Amyloid-β Protein Precursor Regulates Electrophysiological Properties in the Hippocampus via Altered Kv1.4 Expression and Function in Mice

Author:

Li Yi12,Wang Jin-zhao2,Deng Yue-ming2,Wang Kun2,Yang Li3,Long Cheng12

Affiliation:

1. South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China

2. School of Life Sciences, South China Normal University, Guangzhou, China

3. School of Life Sciences, Guangzhou University, Guangzhou, China

Abstract

Background: Amyloid-β protein precursor (AβPP) is enriched in neurons. However, the mechanism underlying AβPP regulation of neuronal activity is poorly understood. Potassium channels are critically involved in neuronal excitability. In hippocampus, A-type potassium channels are highly expressed and involved in determining neuronal spiking. Objective: We explored hippocampal local field potential (LFP) and spiking in the presence and absence of AβPP, and the potential involvement of an A-type potassium channel. Methods: We used in vivo extracellular recording and whole-cell patch-clamp recording to determine neuronal activity, current density of A-type potassium currents, and western blot to detect changes in related protein levels. Results: Abnormal LFP was observed in AβPP–/– mice, including reduced beta and gamma power, and increased epsilon and ripple power. The firing rate of glutamatergic neurons reduced significantly, in line with an increased action potential rheobase. Given that A-type potassium channels regulate neuronal firing, we measured the protein levels and function of two major A-type potassium channels and found that the post-transcriptional level of Kv1.4, but not Kv4.2, was significantly increased in the AβPP–/– mice. This resulted in a marked increase in the peak time of A-type transient outward potassium currents in both glutamatergic and gamma-aminobutyric acid-ergic (GABAergic) neurons. Furthermore, a mechanistic experiment using human embryonic kidney 293 (HEK293) cells revealed that the AβPP deficiency-induced increase in Kv1.4 may not involve protein-protein interaction between AβPP and Kv1.4. Conclusion: This study suggests that AβPP modulates neuronal firing and oscillatory activity in the hippocampus, and Kv1.4 may be involved in mediating the modulation.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3