Simplification algorithm of denture point cloud based on feature preserving

Author:

Wang Shigang,Peng Shuai,He Jiawen

Abstract

Due to the point cloud of oral scan denture has a large amount of data and redundant points. A point cloud simplification algorithm based on feature preserving is proposed to solve the problem that the feature preserving is incomplete when processing point cloud data and cavities occur in relatively flat regions. Firstly, the algorithm uses kd-tree to construct the point cloud spatial topological to search the k-Neighborhood of the sampling point. On the basis of that to calculate the curvature of each point, the angle between the normal vector, the distance from the point to the neighborhood centroid, as well as the standard deviation and the average distance from the point to the neighborhood on this basis, therefore, the detailed features of point cloud can be extracted by multi-feature extraction and threshold determination. For the non-characteristic region, the non-characteristic point cloud is spatially divided through Octree to obtain the K-value of K-means clustering algorithm and the initial clustering center point. The simplified results of non-characteristic regions are obtained after further subdivision. Finally, the extracted detail features and the reduced result of non-featured region will be merged to obtain the final simplification result. The experimental results show that the algorithm can retain the characteristic information of point cloud model better, and effectively avoid the phenomenon of holes in the simplification process. The simplified results have better smoothness, simplicity and precision, and are of high practical value.

Publisher

IOS Press

Subject

Computational Mathematics,Computer Science Applications,General Engineering

Reference16 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fast subsampling strategy for point cloud based on novel octree coding;Measurement Science and Technology;2024-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3