A reliable estimation method for mining lithium-ion battery

Author:

Huang Kaifeng1,Feng Juqiang12,Liu Zegong2,Wu Long1,Zhang Xing1

Affiliation:

1. School of Mechanical and Electrical Engineering, Huainan Normal University, Huainan, Anhui, China

2. School of Energy and Safety, Anhui University of Science and Technology, Huainan, Anhui, China

Abstract

Power battery SOC (state of charge, SOC) is one of the important decision-making factors of energy management. Accurate estimation plays an important role in optimizing vehicle energy management and improving the utilization of power battery energy. The key to accurate estimation of SOC is to determine circuit model parameters and estimation methods. The research object of this article is lithium manganese oxide battery for mining (LiMn2O4). The experiments of multiplying power, temperature and HPPC (hybrid pulse power characteristic, HPPC) are carried out. A self-tuning calculation method of dynamic system is proposed, and the dynamic self-tuning model based on second-order RC is established. At the same time, in view of the shortcoming that the UKF (Unscented Kalman Filter, UKF) algorithm cannot estimate the noise in real time, In order to improve the accuracy of battery SOC estimation, an adaptive square root unscented Kalman filter (ASR-UKF) algorithm is proposed, which can make the noise statistical characteristics follow the estimation results for adaptive adjustment. Finally, the constant current and dynamic conditions are tested. The results show that the maximum change rate of model parameters with magnification is 76%, and the maximum change rate with temperature is 73.7%. The analysis of dynamic characteristics is a key factor to improve the accuracy of SOC estimation; ASR-UKF Compared with the UKF algorithm, the error is reduced by 78% under constant current conditions and 85.7% under dynamic conditions. The reliability and real-time performance of the algorithm can be obtained by comparing the simulation data with the actual data. The conclusions of this paper can be used as a theoretical basis, which can be used for model analysis of lithium batteries for mining and estimation of internal state variables.

Publisher

IOS Press

Subject

Computational Mathematics,Computer Science Applications,General Engineering

Reference27 articles.

1. Remaining dischargeable time prediction for lithium-ion batteries using unscented Kalman filter;Dong;Journal of Power Sources,2017

2. Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries;Xu;Advanced Science,2017

3. LiMn2O4 surface chemistry evolution during cycling revealed by in situ auger electron spectroscopy and X-ray photoelectron spectroscopy;Tang;ACS Applied Materials & Interfaces,2017

4. A novel model of the initial state of charge estimation for LiFePO4 batteries;Zhang;Journal of Power Sources,2014

5. Calculation and characteristics analysis of lithium ion batteries internal resistance using HPPC test;Zhang;Advanced Materials Research,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3