3D print material study to reproduce the function of pig heart tissue

Author:

Kim Jung-Hun11,Park Chun-Kyu21,Park Ji-Eun3,Lee Jong-Min4

Affiliation:

1. Bio-Medical Research institute, Kyungpook National University Hospital, Sangyeok-dong, Buk-gu, Daegu, South Korea

2. Department of Biomedical Engineering, Kyungpook National University, Sangyeok-dong, Buk-gu, Daegu, South Korea

3. Nonlinear Dynamics Laboratory, Kyungpook National University, Sangyeok-dong, Buk-gu, Daegu, South Korea

4. Department of Radiology, School of Medicine, Kyungpook National University, Sangyeok-dong, Buk-gu, Daegu, South Korea

Abstract

BACKGROUND: Three-dimensional (3D) printing technology for heart simulation can be represented as complex anatomical structures, and objective information can be provided. OBJECTIVE: We studied 3D print material to find a material with the same elastic coefficient as pig elastic coefficient. METHODS: Pig heart sample, Agilus sample, Tango sample, TPU sample, and silicone sample were studied. The elastic coefficient of each specimen was measured using an elastic coefficient measuring instrument. The analysis was performed using the average value of ten specimens of the same size. We suggested an equation to find the elastic coefficient of material by the thickness using the elastic coefficient of Agilus, Tango, and silicone. RESULTS: The sample with similar elasticity to the pig sample did not show the same coefficient of elasticity at the same sample size. In Tango, the 0.5 mm high elastic force was about 3 times higher than the pig sample 7 mm elastic force. CONCLUSIONS: The study was conducted using 3D print material and silicone which can reproduce the elasticity of pig heart. However, no material is currently available to reproduce pig heart sample of the same size. However, if the heart is developed considering only elasticity, it can be sufficiently reproduced using the research results.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MRI-based training model for left atrial appendage closure;International Journal of Computer Assisted Radiology and Surgery;2023-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3