Deep support vector neural networks

Author:

Díaz-Vico David1,Prada Jesús2,Omari Adil3,Dorronsoro José2

Affiliation:

1. Instituto de Ingeniería del Conocimiento, Universidad Autónoma de Madrid, Madrid, Spain

2. Departamento de Ingeniería Informática, Universidad Autónoma de Madrid, Madrid, Spain

3. Departamento de Teoría de la Señal, Universidad Carlos III, Madrid, Spain

Abstract

Kernel based Support Vector Machines, SVM, one of the most popular machine learning models, usually achieve top performances in two-class classification and regression problems. However, their training cost is at least quadratic on sample size, making them thus unsuitable for large sample problems. However, Deep Neural Networks (DNNs), with a cost linear on sample size, are able to solve big data problems relatively easily. In this work we propose to combine the advanced representations that DNNs can achieve in their last hidden layers with the hinge and ϵ insensitive losses that are used in two-class SVM classification and regression. We can thus have much better scalability while achieving performances comparable to those of SVMs. Moreover, we will also show that the resulting Deep SVM models are competitive with standard DNNs in two-class classification problems but have an edge in regression ones.

Publisher

IOS Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications,Theoretical Computer Science,Software

Reference31 articles.

1. Fast kernel classifiers with online and active learning;Bordes;Journal of Machine Learning Research,2005

2. EnsembleSVM: a library for ensemble learning using support vector machines;Claesen;Journal of Machine Learning Research,2014

3. Sparse kernel SVMs via cutting-plane training;Joachims;Machine Learning,2009

4. ThunderSVM: a fast SVM library on GPUs and CPUs;Wen;Journal of Machine Learning Research,2018

5. Large linear classification when data cannot fit in memory;Yu;TKDD,2012

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3