Affiliation:
1. Department of Computer Languages and Computer Science, University of Málaga, Málaga, Spain
2. Biomedic Research Institute of Málaga, Málaga, Spain
Abstract
The design of automated video surveillance systems often involves the detection of agents which exhibit anomalous or dangerous behavior in the scene under analysis. Models aimed to enhance the video pattern recognition abilities of the system are commonly integrated in order to increase its performance. Deep learning neural networks are found among the most popular models employed for this purpose. Nevertheless, the large computational demands of deep networks mean that exhaustive scans of the full video frame make the system perform rather poorly in terms of execution speed when implemented on low cost devices, due to the excessive computational load generated by the examination of multiple image windows. This work presents a video surveillance system aimed to detect moving objects with abnormal behavior for a panoramic 360∘ surveillance camera. The block of the video frame to be analyzed is determined on the basis of a probabilistic mixture distribution comprised by two mixture components. The first component is a uniform distribution, which is in charge of a blind window selection, while the second component is a mixture of kernel distributions. The kernel distributions generate windows within the video frame in the vicinity of the areas where anomalies were previously found. This contributes to obtain candidate windows for analysis which are close to the most relevant regions of the video frame, according to the past recorded activity. A Raspberry Pi microcontroller based board is employed to implement the system. This enables the design and implementation of a system with a low cost, which is nevertheless capable of performing the video analysis with a high video frame processing rate.
Subject
Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications,Theoretical Computer Science,Software
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献