An improved approach for energy consumption minimizing in WSN using Harris hawks optimization

Author:

Vasanthi G.1,Prabakaran N.2

Affiliation:

1. Department of Electronics and Communication Engineering, Sathyabama, Institute of Science and Technology, Chennai, Tamilnadu, India

2. Department of Electronics and Communication Engineering, KLEF, University, Vijayawada, Andhra Pradesh, India

Abstract

Wireless Sensor Network (WSN) is made up of minimal power devices (or) units spread over geographically separated locations. Sensors are grouped in the form of clusters. Every cluster has a key node known as the Cluster Head (CH). CH gathers sensed information out of its sensor nodes and transmits into a Base Station (BS). Sensors are indeed installed using non-replaceable batteries. WSN is concerned about its energy usage to reduce (or) minimize the consumption of energy as well as increase network lifetime. An improved upgraded technique is presented, which is accomplished by improving appropriate energy balancing in clusters across every sensor node in order to reduce power dissipation while networking connections. The enhanced technique was built by employing a well-known technique named cluster head selection. Accordingly, the energy consumption of WSN is reduced to prolong the network life cycle other than the network models. Furthermore, an efficient routing CH is optimized by the Average Fitness-based Harris Hawks Optimization (AF-HHO). In the WSN network, this proposed algorithm is used to locate neighbouring nodes with higher energy efficiency measurements. As a result, when compared to other conventional approaches, the simulation results demonstrate superior performance. Through the sink node, an optimal routing path for transferring data packets to neighbouring sensor nodes was discovered. The suggested technique is evaluated using energy consumption, network lifespan, and residual energy performance estimations.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3