Design of an optimized fuzzy system for edge detection in images

Author:

Azimirad Ehsan1

Affiliation:

1. Electrical Engineering Department, University of Torbat Heydarieh, Torbat Heydarieh, Iran

Abstract

Edge Detection is the first stage in the image division into separate parts. Image division is the partitioning of a digital image to the different zones or the set of pixels. Edge detection is one of the techniques applied in digital image processing often. The purpose of detecting pixels is to match the edges in the image. Filtering, Enhancement, and Detection are three steps in edge detection. Images are usually destroyed by casual changes in intensity intervals called noise or confusion. some noise variations include salt and pepper, pulse, and Gaussian. However, there is a relation between edge detection power and noise reduction. Using filters to the noise reduction causes the loss of edge detection power. For facilitating the edges detection, it is essential for the determination of pixels’ intensity constraints in their neighborhood. Many points in an image have a nontransparent slope, and all of them are not the edges of the joint space. Therefore, some of the linear and nonlinear methods such as Sobel, Prewitt, and Robert have to be used to determine the edge points. The fuzzy logic and the system based on it, is one of the most effective methods for edge detection. This paper presents an optimized rule-based fuzzy inference system and designs the efficiency mask matric. The simulation results for edge detection are presented using the traditional edge detection techniques, including Binary Filter, Sobel Filter, Prewitt Filter, and Robert Filter. Also, it is presented using the fuzzy approach. The simulation results show that the designed fuzzy system has been able to detect the edges of the image more accurately and help to increase the sharpness and quality of the edges. Therefore, the proposed method has more accurate and more reliable results and reduces false edge detection comparison to the traditional methods.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3