Intrusion aware data transmission framework in wireless sensor network

Author:

Prabhu T.N.1,Karuppasamy K.2

Affiliation:

1. Department of Information Technology, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu

2. Department of Computer Science and Engineering, RVS College of Engineering and Technology Coimbatore, TamilNadu

Abstract

Intrusion attack is considered as the major concerns to be focussed in wireless sensor network which should be seriously viewed for identification of secure and trustworthy information processing. The various characteristics involved in Intrusion attacks should be adapted precisely since it impacts on result of the intrusion detection in terms of accuracy. PCA-based centralized approach (PCACID) and Knowledge based Intrusion Detection Strategy (KBIDS) is suggested in this research for achieving the accurateintrusion detection. Though KBIDS is involved in achieving accurate detection, the demerit is that time complexity and computational overhead are progressively more which in turn influences on the entire network performance. Traffic Variation based Intrusion Detection System (TV-IDS) plays a major role in mitigating these issues. In addition to it, Fuzzy based mean shift clustering is also suggested for incorporating clustering feature process which influences precise clustering result with the advantage of less time complexity. The decision classifier takes its role after the assessment of data points bias variations. This variation factor helps in recognizing smaller traffic variation and not determined as irregular data. The classification is achieved by hybrid genetic neuro fuzzy classifier. The updating of ANFIS weight values is accomplished concurrently with optimal selection by means of genetic algorithm. The optimal route path is chosen by greatly utilizing the artificial bee colony algorithm. The various fitness parameters involved in this research are energy level of nodes, bandwidth, etc., for efficient data transmission successfully. MATLAB simulation platform is greatly utilized for assessment of overall results for validating that proposed TV-IDS achieves improved outcomes comparatively.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3