A novel dual-granularity lightweight transformer for vision tasks

Author:

Zhang Ji12,Yu Mingxin12,Lu Wenshuai3,Dai Yuxiang3,Shi Huiyu3,You Rui12

Affiliation:

1. School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, China

2. Laboratory of Intelligent Microsystems, Beijing Information Science and Technology University, Beijing, China

3. Department of Precision Instrument, Tsinghua University, Beijing, China

Abstract

Transformer-based networks have revolutionized visual tasks with their continuous innovation, leading to significant progress. However, the widespread adoption of Vision Transformers (ViT) is limited due to their high computational and parameter requirements, making them less feasible for resource-constrained mobile and edge computing devices. Moreover, existing lightweight ViTs exhibit limitations in capturing different granular features, extracting local features efficiently, and incorporating the inductive bias inherent in convolutional neural networks. These limitations somewhat impact the overall performance. To address these limitations, we propose an efficient ViT called Dual-Granularity Former (DGFormer). DGFormer mitigates these limitations by introducing two innovative modules: Dual-Granularity Attention (DG Attention) and Efficient Feed-Forward Network (Efficient FFN). In our experiments, on the image recognition task of ImageNet, DGFormer surpasses lightweight models such as PVTv2-B0 and Swin Transformer by 2.3% in terms of Top1 accuracy. On the object detection task of COCO, under RetinaNet detection framework, DGFormer outperforms PVTv2-B0 and Swin Transformer with increase of 0.5% and 2.4% in average precision (AP), respectively. Similarly, under Mask R-CNN detection framework, DGFormer exhibits improvement of 0.4% and 1.8% in AP compared to PVTv2-B0 and Swin Transformer, respectively. On the semantic segmentation task on the ADE20K, DGFormer achieves a substantial improvement of 2.0% and 2.5% in mean Intersection over Union (mIoU) over PVTv2-B0 and Swin Transformer, respectively. The code is open-source and available at: https://github.com/ISCLab-Bistu/DGFormer.git.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3