Computationally light deep learning framework to recognize cotton leaf diseases

Author:

Noon Serosh Karim12,Amjad Muhammad1,Ali Qureshi Muhammad1,Mannan Abdul2

Affiliation:

1. Department of Electrical Engineering, The Islamia University of Bahawalpur, Pakistan

2. Department of Electrical Engineering, NFC Institute of Engineering & Technology, Pakistan

Abstract

Cotton is an important commodity because of its use in various industries across the globe. It is grown in many countries and is imported/exported as a cash crop due to its large utility. However, cotton yield is adversely affected by the existence of pests, viruses and pathogenic bacteria, etc. For the last one decade or so, several image processing/deep learning-based automatic plant leaf disease recognition methods have been developed but, unfortunately, they rarely address the cotton leaf diseases. The proposed work presents a simple yet efficient deep learning-based framework to recognize cotton leaf diseases. The proposed model is capable of achieving the near ideal accuracy with early convergence to save computational cost of training. Further, due to the unavailability of publicly available datasets for this crop, a dataset is also collected comprising of three diseases namely curl virus, bacterial blight and fusarium wilt in addition to the healthy leaf Images. These images were collected from the Internet and fields of Southern Punjab region in Pakistan where the cotton crop is grown on thousands of acres every year and is exported to the Europe and the US either as a raw material or in the form of knitted industrial/domestic products. Experimental results have shown that almost all variants of our proposed deep learning framework have shown remarkably good recognition accuracy and precision. However, proposed EfficientNet-B0 model achieves 99.95% accuracy in only 152 seconds with best generalization and fast inference.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference35 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3