Affiliation:
1. Department of Electrical Engineering, The Islamia University of Bahawalpur, Pakistan
2. Department of Electrical Engineering, NFC Institute of Engineering & Technology, Pakistan
Abstract
Cotton is an important commodity because of its use in various industries across the globe. It is grown in many countries and is imported/exported as a cash crop due to its large utility. However, cotton yield is adversely affected by the existence of pests, viruses and pathogenic bacteria, etc. For the last one decade or so, several image processing/deep learning-based automatic plant leaf disease recognition methods have been developed but, unfortunately, they rarely address the cotton leaf diseases. The proposed work presents a simple yet efficient deep learning-based framework to recognize cotton leaf diseases. The proposed model is capable of achieving the near ideal accuracy with early convergence to save computational cost of training. Further, due to the unavailability of publicly available datasets for this crop, a dataset is also collected comprising of three diseases namely curl virus, bacterial blight and fusarium wilt in addition to the healthy leaf Images. These images were collected from the Internet and fields of Southern Punjab region in Pakistan where the cotton crop is grown on thousands of acres every year and is exported to the Europe and the US either as a raw material or in the form of knitted industrial/domestic products. Experimental results have shown that almost all variants of our proposed deep learning framework have shown remarkably good recognition accuracy and precision. However, proposed EfficientNet-B0 model achieves 99.95% accuracy in only 152 seconds with best generalization and fast inference.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献