A detailed kinetic study on the tautomerization reactions of barbituric acid: A combined DFT-QTAIM analysis

Author:

Hajali Narjes1,Taghva Manesh Afshin1,Seif Ahmad1

Affiliation:

1. Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

A detailed kinetic study on the tautomerization reactions of barbituric acid (BA) at elevated temperatures from 270 K up to 1000 K was performed in this work. The B3LYP/6-311 + G(3df,2p) density functional theory (DFT) calculations were performed to evaluate the rate constants of transition states (TS) conversions of the tautomerization reactions. The connections from a given TS to the corresponding local minima of the reactant and product sides were confirmed by means of employing the intrinsic reaction coordinate (IRC) method. Moreover, the quantum theory of atoms in molecules (QTAIM) approach was employed to analyze the molecular mechanisms of reactions. The effects of vibrational normal mode frequencies of the reactant and TS were investigated on the curvature of the corresponding Arrhenius plot in the presence and absence of the tunneling effect. For each tautomerization reaction, the investigated reaction was partitioned into three different stages and four zones. The obtained results were plotted along with the corresponding reaction coordinates for each reaction considering and comparing different factors in agreement with already affirmed concepts. As a consequence, details of performed kinetic study on the tautomerization reactions of BA were successfully provided in this work.

Publisher

IOS Press

Subject

Materials Chemistry,Inorganic Chemistry,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3