Electronic and structural computing features of some chromene derivatives and evaluating their anticancer activities

Author:

Azimzadeh-Sadeghi Setareh1

Affiliation:

1. Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

Electronic and structural features of some of representative chromene derivatives were investigated in this work towards recognizing their anticancer roles. Density functional theory (DFT) calculations were performed to obtain five structures of chromene derivatives with the same skeleton of original structure. In addition to obtaining optimized structural geometries, electronic molecular orbital features were evaluated for the models. Energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) indicated effects of additional R group pf chromene derivatives on electronic features. Based on such results, it was predicted that one of derivatives, L5, could better participate in interactions with other substances in comparison with other ligand structures. This achievement was obtained based on availability of HOMO and LUMO levels in lower energies easily catchable for electron transferring. On the other hand, L5 was assumed to interact in the weakest mode with other substances. Indeed, the main goal of this work was to examine anticancer activity of the investigated chromene derivatives, in which each of L1–L5 chromene derivatives were analyzed first to recognized electronic and structural features. Next, molecular docking (MD) simulations were performed to examine anticancer role of L1–L5 against methyltransferase cancerous enzyme target. The results indicated that formations of ligand-target complexes could be occurred within different types of interactions and surrounding amino acids of central ligand. In agreement with the achievements of analyses of single-standing L1–L5 compounds, L4-Target was seen as the strongest complex among possible complex formations. Moreover, values of binding energies and inhibition constant indicated that all five chromene derivatives could work as inhibitors of methyltransferase cancerous enzyme by the most advantage for L4 ligand. And as a final remark, details of such anticancer activity were recognized by graphical representations of ligand-target complexes showing types of interactions and involving amino acids in interactions.

Publisher

IOS Press

Subject

Materials Chemistry,Inorganic Chemistry,Organic Chemistry

Reference35 articles.

1. Global trends in colorectal cancer mortality: projections to the year 2035;Araghi;International Journal of Cancer,2019

2. Is it time to reconsider the term “cancer survivor”?;Berry;Journal of Psychosocial Oncology,2019

3. Has vitamin E any shredsof evidence in cisplatin-induced toxicity;Hakiminia;Journal ofBiochemical and Molecular Toxicology,2019

4. A review on the use of magnetic fields and ultrasound for non-invasive cancer treatment;Sengupta;Journal of Advanced Research,2018

5. Small molecule-drug conjugates: A novel strategy for cancer-targeted treatment,;Zhuang;European Journal of Medicinal Chemistry,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3