Performance improvement for organic light emitting diodes by changing the position of mixed-interlayer

Author:

Maurya Pooja1,Mittal Poornima2,Kumar Brijesh1

Affiliation:

1. Department of Electronics and Communication Engineering, M. M. M. University of Technology, Gorakhpur, Uttar Pradesh, India

2. Department of Electronics and Communication Engineering, Delhi Technological University, Delhi, India

Abstract

Organic Light-Emitting Diode (OLED) is presently the most sought-after display technology. It provides low-cost, flexible, rollable displays in addition to wide viewing angles and excellent colour qualities. Still, the organic displays have not reached at their best performance and there is a lot of scope for improvement in their performance. In addition to the injection layer, emission layer, transport layer, etc, researchers are looking forward to the charge carrier transport layer, spacer layer, mixed interlayer, etc. to further enhance the device performance. In this article, a depth analysis related to the impact of the position of the mixed interlayer is performed to analyze the impact on device performance. It is observed that on shifting mixed interlayer (MI) towards the cathode; luminescence and current density depict depreciation. However, on shifting MI towards anode there is a significant performance improvement. The complete analysis includes seven device structures, wherein the position of MI is varied. The best performing device depicts luminescence of 17139 cd/m2 and a current density of 84.6 mA/cm2, which is 40.05% higher for luminescence and 111.5% for current density than that of reference device. Additionally, the internal analysis of device structure is thoroughly evaluated using the cut line method to better understand the internal device physics in terms of the electric field, electron concentration, total current density, Langevin’s recombination rate, and Singlet exciton density.

Publisher

IOS Press

Subject

Materials Chemistry,Inorganic Chemistry,Organic Chemistry

Reference35 articles.

1. Organic thin-film transistors: structures, models, materials, fabrication, and applications-A review;Kumar;Polymer Reviews,2014

2. Channel length variation effect on performance parameters of organic field-effect transistors;Mittal;Microelectronics Journal,2012

3. Perspective and challenges for organic thin-film transistor: Materials, devices, process and applications;Kumar;Journal of Mat Sci: Material in Electronics,2013

4. Characteristics performance of OLED based on hole injection, transport, and blocking layers;Negi;Recent Advances in Electrical & Electronics Engg,2020

5. Detection of ovarian cancer using;Negi;Organic Light Emitting Diode Microelectronics Engg,2018

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3