Microassay validation for bacterial IAA estimation as a new fine-tuned PGPR screening assay

Author:

Abdelwahed Soukaina1,Cherif Hanen1,Bejaoui Bilel1,Saadouli Ilhem2,Hajji Tarek1,Ben Halim Nizar3,Ouertani Awatef1,Ouzari Imen2,Cherif Ameur1,Mnif Wissem45,Mosbah Amor1,Masmoudi Ahmed Slaheddine1

Affiliation:

1. Laboratory (BVBGR)-LR11ES31, Univ. Manouba, ISBST, Biotechnopole Sidi Thabet, Ariana, Tunisia

2. Active Microorganisms and Biomolecules Laboratory (LMBA), Faculty of Sciences of Tunis, Tunis, Tunisia

3. Biomedical and Oncogenetic Genomics Laboratory (LR 16 IPT 05), Pasteur institute of Tunis, Tunis, Tunisia

4. Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha, Saudi Arabia

5. Laboratory of Biotechnology and Valorisation of Bio-GeoRessources, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana, Tunisia

Abstract

The detection and quantification of Indole -3 Acetic Acid (IAA) produced by Plant growth promoting rhizobacteria (PGPR) rely on a standard well-documented assay, which remains time-consuming, laborious, and costly. These drawbacks led to sway interest to economic and reliable assays. The aim of this work is to validate and standardize a fast, reliable, and cost-effective microassay to quantify IAA produced by bacteria with an easy microplate method. In order to validate the accuracy of the IAA microplate assay, bacterial samples from different genera were assayed using two methods: the conventional IAA estimation assay and the IAA micro- assay. The microassay shows a prominent reduction in used bacterial supernatant volume as well as Salkowski reagent volume of about 92.5%. It is considerably cheaper than the conventional one of around 56%. The newly performed microplate assay is 23 times faster. The result of IAA quantitative analysis for 13 bacterial strains showed that Bacillus muralis and Bacillus toyonensis produced the highest IAA concentration (23.64±0.003μg/ml and 23.35±0.006μg/ml, respectively). The obtained data from both methods were highly correlated with an R-value of 0.979. The microassay offers the ability to read the optical density of all samples simultaneously since used volumes of bacterial supernatants and Salkowski reagent were minimized to place the mixture in 96-well microplates, which reduces greatly required labor. Furthermore, the application of the IAA micro-plate assay reduces drastically the reagent waste and toxicity hazard of Salkowski reagent in the environment, thus, we can classify it as eco-friendly respecting the Green Chemistry concept according to Environmental Protection Agency (EPA). The IAA microassay is a, reliable, rapid and cost-effective and eco-friendly method to screen plant growth promoting potential of more than 23 bacterial strains by microplate. It could be an alternative for the conventional IAA assay as a routine research tool.

Publisher

IOS Press

Subject

Materials Chemistry,Inorganic Chemistry,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3