An obstacle aware efficient MANET routing with optimized Bi-LSTM and multi-objective constraints on improved heuristic algorithm

Author:

Bhavadharini R.M.1,Mercy Rajaselvi Beaulah P.1,Om Kumar C.U.1,Krithiga R.1

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India

Abstract

Mobile Ad Hoc Networks (MANETs) are self-organizing, self-configuring, and infrastructure-less networks for performing multi-hop communication. The source mobile node can transmit the information to any other destination node, but it has limitations with energy consumption and battery lifetime. Since it appeals to a huge environment, there is a probability of obstacle present. Thus, the network requires finding the obstacles to evade performance degradation and also enhance the routing efficiency. To achieve this, an obstacle-aware efficient routing using a heuristic-based deep learning model is proposed in this paper. Firstly, the nodes in the MANET are employed for initiating the transmission. Further, it is needed to be predicted whether the node is malicious or not. Consequently, the prediction for link connection between the nodes is achieved by the Optimized Bi-directional Long-Short Term Memory (OBi-LSTM), where the hyperparameters are tuned by the Adaptive Horse Herd Optimization (AHHO) algorithm. Secondly, once the links are secured from the obstacle, it is undergone for routing purpose. Routing is generally used to transmit data or packets from one place to another. To attain better routing, various objective constraints like delay, distance, path availability, transmission power, and several interferences are used for deriving a multi-objective function, in which the optimal path is obtained through the AHHO algorithm. Finally, the simulation results of the proposed model ensure to yield efficient multipath routing by accurately identifying the intruder present in the network. Thus, the proposed model aims to reduce the objectives like delay, distance, and power consumption.

Publisher

IOS Press

Subject

Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive fuzzy-based node communication performance prediction with hybrid heuristic Cluster Head selection framework in WSN using enhanced K-means clustering mechanism;Journal of Ambient Intelligence and Smart Environments;2024-06-13

2. Transformer top oil temperature prediction based on VMD and optimized BiGRU model;Eighth International Conference on Energy System, Electricity, and Power (ESEP 2023);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3