Affiliation:
1. Business School, Sichuan University, Chengdu, China
Abstract
BACKGROUND: The health risk assessment aims to describe and evaluate the possibility of a certain disease, hospitalization, or death. With the in-depth research of big data and machine learning technology, the health risk of individuals can be assessed by using the technology, and intervention measures can be taken in advance to reduce the risk. OBJECTIVE: This study aims to accurately predict and evaluate the possible risks of the population and individuals caused by environmental factors, and constantly improve the medical implementation process. METHODS: The relationship between air pollutants and health risk is analyzed from three dimensions of the respiratory system, circulatory system, and digestive system, the prediction method of health quantity related to environmental factors is explored, and a hybrid time series model HTSM (Heuristic Test Strategy Model) based on nonparametric regression and residual fitting is proposed. RESULTS: Respiratory and circulatory diseases are pollutant-sensitive diseases, while the elderly (> 65 years old) are the high-risk population. The improved model can effectively predict the unplanned readmission data in the actual medical scene, and the accuracy of the improved model is 11.11%higher than that of the traditional prediction model. In contrast to the single prediction model, HTSM’s error index for different systems is much lower. The mixed model HTSM is better than the single model in fitting the original data. CONCLUSION: HTSM model based on time series can effectively predict pollutant-sensitive diseases, which can provide an effective theoretical basis for assessing and predicting the population and individual health risks.
Subject
Public Health, Environmental and Occupational Health,Rehabilitation
Reference27 articles.
1. Evolution of environmental policy for China’s rare earths: Comparing central and local government policies;Chai;Resources Policy,2020
2. Environmental incidents and the market value of firms: An empirical investigation in the Chinese context;Lo;Manufacturing & Service Operations Management,2018
3. Teacher Candidates’ Attitudes, Knowledge Levels and Sensitivities towards Environmental Problems;Akman;Journal of Education and Practice,2017
4. Air pollution intervention and life-saving effect in China;Zou;Environment International,2019
5. The Updated Brazilian National Air Quality Standards: A Critical Review;Siciliano;Journal of the Brazilian Chemical Society,2020