The stiff Neumann problem: Asymptotic specialty and “kissing” domains

Author:

Chiadò Piat V.1,D’Elia L.2,Nazarov S.A.3

Affiliation:

1. Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy. E-mail: valeria.chiadopiat@polito.it

2. Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della ricerca scientifica 1, 00133 Roma, Italy. E-mail: delia@axp.mat.uniroma2.it

3. Institute of Problems Mechanical Engineering RAS, V.O., Bolshoj pr., 61, St. Petersburg, 199178, Russia. E-mail: srgnazarov@yahoo.co.uk

Abstract

We study the stiff spectral Neumann problem for the Laplace operator in a smooth bounded domain Ω ⊂ R d which is divided into two subdomains: an annulus Ω 1 and a core Ω 0 . The density and the stiffness constants are of order ε − 2 m and ε − 1 in Ω 0 , while they are of order 1 in Ω 1 . Here m ∈ R is fixed and ε > 0 is small. We provide asymptotics for the eigenvalues and the corresponding eigenfunctions as ε → 0 for any m. In dimension 2 the case when Ω 0 touches the exterior boundary ∂ Ω and Ω 1 gets two cusps at a point O is included into consideration. The possibility to apply the same asymptotic procedure as in the “smooth” case is based on the structure of eigenfunctions in the vicinity of the irregular part. The full asymptotic series as x → O for solutions of the mixed boundary value problem for the Laplace operator in the cuspidal domain is given.

Publisher

IOS Press

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3