DeepReturn: A deep neural network can learn how to detect previously-unseen ROP payloads without using any heuristics

Author:

Li Xusheng1,Hu Zhisheng2,Wang Haizhou1,Fu Yiwei3,Chen Ping4,Zhu Minghui5,Liu Peng1

Affiliation:

1. College of Information Sciences and Technology, Pennsylvania State University, PA, USA. E-mails: xul200@psu.edu, hjw5074@psu.edu, pliu@ist.psu.edu

2. Baidu Security, CA, USA. E-mail: zhishenghu@baidu.com

3. GE Research, NY, USA. E-mail: yiweifu1@gmail.com

4. JD.com American Technologies Corporation, CA, USA. E-mail: ping.chen@jd.com

5. School of Electrical Engineering and Computer Science, Pennsylvania State University, PA, USA. E-mail: muz16@psu.edu

Abstract

Return-oriented programming (ROP) is a code reuse attack that chains short snippets of existing code to perform arbitrary operations on target machines. Existing detection methods against ROP exhibit unsatisfactory detection accuracy and/or have high runtime overhead. In this paper, we present DeepReturn, which innovatively combines address space layout guided disassembly and deep neural networks to detect ROP payloads. The disassembler treats application input data as code pointers and aims to find any potential gadget chains, which are then classified by a deep neural network as benign or malicious. Our experiments show that DeepReturn has high detection rate (99.3%) and a very low false positive rate (0.01%). DeepReturn successfully detects all of the 100 real-world ROP exploits that are collected in-the-wild, created manually or created by ROP exploit generation tools. DeepReturn is non-intrusive and does not incur any runtime overhead to the protected program.

Publisher

IOS Press

Subject

Computer Networks and Communications,Hardware and Architecture,Safety, Risk, Reliability and Quality,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3