Foundations of the Socio-Physical Model of Activities (SOMA) for Autonomous Robotic Agents1

Author:

Beßler Daniel1,Porzel Robert2,Pomarlan Mihai3,Vyas Abhijit1,Höffner Sebastian2,Beetz Michael1,Malaka Rainer2,Bateman John3

Affiliation:

1. Department of Artificial Intelligence, University of Bremen, 28359 Bremen, Germany

2. Digital Media Lab, TZI, University of Bremen, 28359 Bremen, Germany

3. Department of Linguistics, University of Bremen, 28359 Bremen, Germany

Abstract

In this paper, we present foundations of the Socio-physical Model of Activities (SOMA). SOMA represents both the physical as well as the social context of everyday activities. Such tasks seem to be trivial for humans, however, they pose severe problems for artificial agents. For starters, a natural language command requesting something will leave many pieces of information necessary for performing the task unspecified. Humans can solve such problems fast as we reduce the search space by recourse to prior knowledge such as a connected collection of plans that describe how certain goals can be achieved at various levels of abstraction. Rather than enumerating fine-grained physical contexts SOMA sets out to include socially constructed knowledge about the functions of actions to achieve a variety of goals or the roles objects can play in a given situation. As the human cognition system is capable of generalizing experiences into abstract knowledge pieces applicable to novel situations, we argue that both physical and social context need be modeled to tackle these challenges in a general manner. The central contribution of this work, therefore, lies in a comprehensive model connecting physical and social entities, that enables flexibility of executions by the robotic agents via symbolic reasoning with the model. This is, by and large, facilitated by the link between the physical and social context in SOMA where relationships are established between occurrences and generalizations of them, which has been demonstrated in several use cases in the domain of everyday activites that validate SOMA.

Publisher

IOS Press

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3