Chapter 2. Symbolic Reasoning in Latent Space: Classical Planning as an Example

Author:

Asai Masataro1,Kajino Hiroshi2,Fukunaga Alex3,Muise Christian4

Affiliation:

1. MIT-IBM Watson AI Lab, IBM Research Cambridge

2. IBM Research Tokyo

3. Graduate School of Arts and Sciences, University of Tokyo

4. School of Computing, Queen’s University

Abstract

Symbolic systems require hand-coded symbolic representation as input, resulting in a knowledge acquisition bottleneck. Meanwhile, although deep learning has achieved significant success in many fields, the knowledge is encoded in a subsymbolic representation which is incompatible with symbolic systems. To address the gap between the two fields, one has to solve Symbol Grounding problem: The question of how a machine can generate symbols automatically. We discuss our recent work called Latplan, an unsupervised architecture combining deep learning and classical planning. Given only an unlabeled set of image pairs showing a subset of transitions allowed in the environment (training inputs), Latplan learns a complete propositional PDDL action model of the environment. Later, when a pair of images representing the initial and the goal states (planning inputs) is given, Latplan finds a plan to the goal state in a symbolic latent space and returns a visualized plan execution. We discuss several key ideas that made Latplan possible which would hopefully extend to many other symbolic paradigms outside classical planning.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3