Author:
Zafeiriou Theodoros,Kalles Dimitris
Abstract
This document outlines the analysis, design, implementation, and benchmarking of various neural network architectures in a short-term frequency prediction system for the FOREX market. Our objective is to emulate the decision-making process of a human expert (technical analyst) through a system that swiftly adapts to market condition changes, thereby optimizing short-term trading strategies. We have designed and implemented a series of LSTM neural network architectures that take exchange rate values as input to generate short-term market trend forecasts. Additionally, we developed a custom ANN architecture based on simulators for technical analysis indicators. We performed a comparative analysis of the results and came to useful conclusions regarding the suitability of each architecture and the cost in terms of time and computational power to implement them. The ANN custom architecture produces better prediction quality with higher sensitivity using fewer resources and spending less time than LSTM architectures. The ANN custom architecture appears to be ideal for use in low-power computing systems and for use cases that need fast decisions with the least possible computational cost.