Post-Translational Chemical Modification of Amyloid-β Peptides by 4-Hydroxy-2-Nonenal

Author:

Kikuchi Hiroyuki12,Takahashi Miki13,Komatsu Hiroaki1,Axelsen Paul H.1

Affiliation:

1. Department of Pharmacology, 1009C Stellar Chance Laboratories, University of Pennsylvania, Philadelphia, PA, USA

2. Present address: Division of Foods, National Institute of Health Sciences, Kawasaki City, Kanagawa, Japan

3. Present address: College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan

Abstract

Background: The extraction and quantification of amyloid-β (Aβ) peptides in brain tissue commonly uses formic acid (FA) to disaggregate Aβ fibrils. However, it is not clear whether FA can disaggregate post-translationally modified Aβ peptides, or whether it induces artifact by covalent modification during disaggregation. Of particular interest are Aβ peptides that have been covalently modified by 4-hydroxy-2-nonenal (HNE), an oxidative lipid degradation product produced in the vicinity of amyloid plaques that dramatically accelerates the aggregation of Aβ peptides. Objective: Test the ability of FA to disaggregate Aβ peptides modified by HNE and to induce covalent artifacts. Methods: Quantitative liquid-chromatography-tandem-mass spectrometry of monomeric Aβ peptides and identify covalently modified forms. Results: FA disaggregated ordinary Aβ fibrils but also induced the time-dependent formylation of at least 2 residue side chains in Aβ peptides, as well as oxidation of its methionine side chain. FA was unable to disaggregate Aβ peptides that had been covalently modified by HNE. Conclusion: The inability of FA to disaggregate Aβ peptides modified by HNE prevents FA-based approaches from quantifying a pool of HNE-modified Aβ peptides in brain tissue that may have pathological significance.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3