Tryptophan Metabolism and Neurodegeneration: Longitudinal Associations of Kynurenine Pathway Metabolites with Cognitive Performance and Plasma Alzheimer’s Disease and Related Dementias Biomarkers in the Duke Physical Performance Across the LifeSpan Study

Author:

Parker Daniel C.12,Kraus William E.2345,Whitson Heather E.12,Kraus Virginia B.2456,Smith Patrick J.7,Cohen Harvey Jay125,Pieper Carl F.258,Faldowski Richard A.8,Hall Katherine S.259,Huebner Janet L.45,Ilkayeva Olga R.41011,Bain James R.2451011,Newby L. Kristin312,Huffman Kim M.246

Affiliation:

1. Duke University School of Medicine, Division of Geriatrics, Durham, NC, USA

2. Duke University Center for the Study of Aging and Human Development, Durham, NC, USA

3. Duke University School of Medicine, Division of Cardiology, Durham, NC, USA

4. Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA

5. Claude D. Pepper Older Americans Independence Center, Duke University School of Medicine, Durham, NC, USA

6. Duke University School of Medicine, Division of Rheumatology and Immunology, Durham, NC, USA

7. Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA

8. Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA

9. Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Durham, NC, USA

10. Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA

11. Department of Medicine, Duke University School of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Durham, NC, USA

12. Duke University Clinical and Translational Science Institute, Durham, NC, USA

Abstract

Background: The kynurenine pathway (KP) comprises a family of tryptophan-derived metabolites that some studies have reported are associated with poorer cognitive performance and an increased risk of Alzheimer’s disease and related dementias (ADRD). Objective: The objective of this study was to determine the associations of plasma KP metabolites (kynurenine [KYN], kynurenic acid [KA], and tryptophan [TRP]) with a panel of plasma ADRD biomarkers (Aβ42/ β40 ratio, pTau-181, glial fibrillary acidic protein [GFAP], and neurofilament light [NfL]) and cognitive performance in a subset of older adults drawn from the Duke Physical Performance Across the LifeSpan (PALS) study. Methods: The Montreal Cognitive Assessment (MoCA) was used to assess cognitive performance. We used multivariate multiple regression to evaluate associations of the KYN/TRP and KA/KYN ratios with MoCA score and plasma ADRD biomarkers at baseline and over two years (n = 301; Age = 74.8±8.7). Results: Over two years, an increasing KYN/TRP ratio was associated with increasing plasma concentrations of plasma p-Tau181 (β= 6.151; 95% CI [0.29, 12.01]; p = 0.040), GFAP (β= 11.12; 95% CI [1.73, 20.51]; p = 0.020), and NfL (β= 11.13; 95% CI [2.745, 19.52]; p = 0.009), but not MoCA score or the Aβ42/Aβ40 ratio. There were no significant associations of KA/KYN with MoCA score or plasma ADRD biomarkers. Conclusion: Our findings provide evidence that greater concentrations of KP metabolites are associated longitudinally over two years with greater biomarker evidence of neurofibrillary tau pathology (pTau-181), neuroinflammation (GFAP), and neurodegeneration (NfL), suggesting that dysregulated KP metabolism may play a role in ADRD pathogenesis.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3