Gaze shift dynamic visual acuity: A functional test of gaze stability that distinguishes unilateral vestibular hypofunction

Author:

Chen Po-Yin1234,Jheng Ying-Chun1234,Huang Shih-En1234,Po-Hung Li Lieber256,Wei Shun-Hwa4,Schubert Michael C.7,Kao Chung-Lan123

Affiliation:

1. Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan, ROC

2. School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC

3. Center for Intelligent Drug Systems and Smart Bio-devices-IDS B, National Chiao Tung University, Hsinchu, Taiwan, ROC

4. Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan, ROC

5. Department of Otolaryngology, Cheng Hsin General Hospital, Taipei, Taiwan, ROC

6. Faculty of Medicine and Institute of Brain Science, School of Medicine, National Yang Ming University, Taipei, Taiwan, ROC

7. Laboratory of Vestibular NeuroAdaptation, Johns Hopkins University School of Medicine, Department of Otolaryngology Head and Neck Surgery, Department of Physical Medicine and Rehabilitation, Baltimore MD USA

Abstract

BACKGROUND: Embedded within most rapid head rotations are gaze shifts, which is an initial eye rotation to a target of interest, followed by a head rotation towards the same target. Gaze shifts are used to acquire an image that initially is outside of the participant’s current field of vision. Currently, there are no tools available that evaluate the functional relevance of a gaze shift. OBJECTIVE: The purpose of our study was to measure dynamic visual acuity (DVA) while performing a gaze shift. METHODS: Seventy-one healthy participants (42.79±16.89 years) and 34 participants with unilateral vestibular hypofunction (UVH) (54.59±20.14 years) were tested while wearing an inertial measurement unit (IMU) sensor on the head and walking on a treadmill surrounded by three monitors. We measured visual acuity during three subcomponent tests: standing (static visual acuity), while performing an active head rotation gaze shift, and an active head rotation gaze shift while walking (gsDVAw). RESULTS: While doing gsDVAw, patients with Left UVH (n = 21) had scores worse (p = 0.023) for leftward (0.0446±0.0943 LogMAR) head rotation compared with the healthy controls (–0.0075±0.0410 LogMAR). Similarly, patients with right UVH (N = 13) had worse (p = 0.025) gsDVAw for rightward head motion (0.0307±0.0481 LogMAR) compared with healthy controls (–0.0047±0.0433 LogMAR). As a whole, gsDVAw scores were worse in UVH compared to the healthy controls when we included the ipsilesional head rotation on both sides gsDVAw (0.0061±0.0421 LogMAR healthy vs. 0.03926±0.0822 LogMAR UVH, p = 0.003). Controlling for age had no effect, the gsDVAw scores of the patients were always worse (p < 0.01). CONCLUSION: The gaze shift DVA test can distinguish gaze stability in patients with UVH from healthy controls. This test may be a useful measure of compensation for patients undergoing various therapies for their vestibular hypofunction.

Publisher

IOS Press

Subject

Clinical Neurology,Sensory Systems,Otorhinolaryngology,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3