Generalized Chern–Simons–Schrödinger system with critical exponential growth: The zero-mass case

Author:

Shen Liejun1,Squassina Marco2

Affiliation:

1. Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People’s Republic of China

2. Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via della Garzetta 48, 25133, Brescia, Italy

Abstract

We consider the existence of ground state solutions for a class of zero-mass Chern–Simons–Schrödinger systems − Δ u + A 0 u + ∑ j = 1 2 A j 2 u = f ( u ) − a ( x ) | u | p − 2 u , ∂ 1 A 2 − ∂ 2 A 1 = − 1 2 | u | 2 , ∂ 1 A 1 + ∂ 2 A 2 = 0 , ∂ 1 A 0 = A 2 | u | 2 , ∂ 2 A 0 = − A 1 | u | 2 , where a : R 2 → R + is an external potential, p ∈ ( 1 , 2 ) and f ∈ C ( R ) denotes the nonlinearity that fulfills the critical exponential growth in the Trudinger–Moser sense at infinity. By introducing an improvement of the version of Trudinger–Moser inequality approached in (J. Differential Equations 393 (2024) 204–237), we are able to investigate the existence of positive ground state solutions for the given system using variational method.

Publisher

IOS Press

Reference39 articles.

1. Multiplicity results for semilinear elliptic equations in bounded domain of R 2 involving critical exponent;Adimurthi;Ann. Scuola Norm. Sup. Pisa Cl. Sci.,1990

2. An interpolation of Hardy inequality and Trudinger–Moser inequality in R N and its applications;Adimurthi;Int. Math. Res. Not. IMRN,2010

3. Sharp Gagliardo–Nirenberg inequalities via p-Laplacian type equations;Agueh;NoDEA Nonlinear Differential Equations Appl.,2008

4. A. Azzollini and A. Pomponio, Positive energy static solutions for the Chern–Simons–Schrödinger system under a large-distance fall-off requirement on the gauge potentials, Calc. Var. Partial Differential Equations 60 (2021), 165.

5. Nonlinear scalar field equations. I. Existence of a ground state;Berestycki;Arch. Ration. Mech. Anal.,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3