Asymptotic analysis of two-dimensional Oldroyd fluids in unbounded domains: Global attractors and their dimension

Author:

Kinra Kush1,Mohan Manil T.2

Affiliation:

1. Tata Institute of Fundamental Research – Centre For Applicable Mathematics (TIFR-CAM), Bangalore 560065, Karnataka, India

2. Department of Mathematics, Indian Institute of Technology Roorkee-IIT Roorkee, Haridwar Highway, Roorkee, Uttarakhand 247667, India

Abstract

In this work, we consider the two-dimensional Oldroyd model for the non-Newtonian fluid flows (viscoelastic fluid) in Poincaré domains (bounded or unbounded) and study their asymptotic behavior. We establish the existence of a global attractor in Poincaré domains using asymptotic compactness property. Since the high regularity of solutions is not easy to establish, we prove the asymptotic compactness of the solution operator by applying Kuratowski’s measure of noncompactness, which relies on uniform-tail estimates and the flattening property of the solution. Finally, the estimates for the Hausdorff as well as fractal dimensions of global attractors are also obtained.

Publisher

IOS Press

Reference51 articles.

1. Attractor for a Navier–Stokes flow in an unbounded domain;Abergel;Math. Mod. Num. Anal.,1989

2. Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains;Abergel;J. Diff. Equ.,1990

3. Investigation of viscoelastic fluid mathematical model;Agranovich;RAC. Ukranian SSR., Ser. A,1989

4. The motion of non-linear viscoelastic fluid;Agranovich;RAC. USSR,1990

5. Motion of non-linear viscoelastic fluid;Agranovich;Nonlinear Analysis,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3