Morphological Study of Fabricated PVDF Based Hydrophobic Membrane for Different Additives and Coagulation Bath Temperature

Author:

Yadav Meenakshi1,Upadhyaya Sushant1,Singh Kailash1,Vashishtha Manish1

Affiliation:

1. Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur - 302017, India

Abstract

The demand of membrane distillation (MD) has increased since last few decades for numerous applications. The membrane used in MD is hydrophobic; therefore, the focus has been emphasised on the development of a suitable membrane with desired microstructure. In this study, the flat sheet hydrophobic membrane of suitable properties has been casted with various additives such as water, ethane-di-ol, and propan-2-ol in dope solution using a non-solvent induced phase separation (NIPS) technique. The effect of water content in dope solution has been studied on casted membrane porosity and contact angle. The maximum contact angle and porosity were found to be 96° and 53.23% at 4 weight percent of water content in dope solution of PVDF polymer and di.methyl.acetamide as solvent. It was found that SEM micrograph when ethane-di-ol and propan-2-ol are used as an additive shows more finger-like pores and nodules, respectively, in the microstructure of the casted membrane. Furthermore, synergistic effects using water with other additives were also identified using SEM micrograph of casted membrane and it was observed that water with ethane-di-ol and propan-2-ol form contact angle of 98° and 105°, respectively, for 2 weight percent each additive in dope. In this study, the membrane was also cast by dissolving PVDF powder in di.methyl.acetamide solvent with lithium chloride and the effect of the temperature difference between coagulation bath and film temperature was investigated using an SEM micrograph. Overall, it was found that water content and temperature difference aid in developing hydrophobic porous membrane of desired properties for MD applications.

Publisher

IOS Press

Subject

Pollution,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3