FDB-Net: Fusion double branch network combining CNN and transformer for medical image segmentation

Author:

Jiang Zhongchuan12,Wu Yun12,Huang Lei12,Gu Maohua12

Affiliation:

1. State Key Laboratory of Public Big Data, Guiyang, China

2. College of Computer Science and Technology, Guizhou University, Guiyang, China

Abstract

BACKGROUND: The rapid development of deep learning techniques has greatly improved the performance of medical image segmentation, and medical image segmentation networks based on convolutional neural networks and Transformer have been widely used in this field. However, due to the limitation of the restricted receptive field of convolutional operation and the lack of local fine information extraction ability of the self-attention mechanism in Transformer, the current neural networks with pure convolutional or Transformer structure as the backbone still perform poorly in medical image segmentation. METHODS: In this paper, we propose FDB-Net (Fusion Double Branch Network, FDB-Net), a double branch medical image segmentation network combining CNN and Transformer, by using a CNN containing gnConv blocks and a Transformer containing Varied-Size Window Attention (VWA) blocks as the feature extraction backbone network, the dual-path encoder ensures that the network has a global receptive field as well as access to the target local detail features. We also propose a new feature fusion module (Deep Feature Fusion, DFF), which helps the image to simultaneously fuse features from two different structural encoders during the encoding process, ensuring the effective fusion of global and local information of the image. CONCLUSION: Our model achieves advanced results in all three typical tasks of medical image segmentation, which fully validates the effectiveness of FDB-Net.

Publisher

IOS Press

Reference47 articles.

1. D-former: A ushaped dilated transformer for 3d medical image segmentation;Wu;Neural Computing and Applications,2022

2. Weighted res-unet for high-quality retina vessel segmentation;Xiao;2018 9th International Conference on Information Technology in Medicine and Education (ITME),2018

3. Fully dense unet for 2-d sparse photoacoustic tomography artifact removal;Guan;IEEE Journal of Biomedical and Health Informatics,2019

4. D-unet: a dimension-fusion u shape network for chronic stroke lesion segmentation;Zhou;IEEE/ACM Transactions on Computational Biology and Bioinformatics,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3