Learning binary codes for fast image retrieval with sparse discriminant analysis and deep autoencoders

Author:

Hong Son An1,Huu Quynh Nguyen2,Viet Dung Cu2,Thi Thuy Quynh Dao3,Quoc Tao Ngo4

Affiliation:

1. Viet-Hung University, HaNoi, Viet Nam

2. Thuyloi University, HaNoi, Viet Nam

3. Posts and Telecommunications Institute of Technology, HaNoi, Viet Nam

4. Institute of Information Technology, Vietnam Academy of Science and Technology, HaNoi, Viet Nam

Abstract

Image retrieval with relevant feedback on large and high-dimensional image databases is a challenging task. In this paper, we propose an image retrieval method, called BCFIR (Binary Codes for Fast Image Retrieval). BCFIR utilizes sparse discriminant analysis to select the most important original feature set, and solve the small class problem in the relevance feedback. Besides, to increase the retrieval performance on large-scale image databases, in addition to BCFIR mapping real-valued features to short binary codes, it also applies a bagging learning strategy to improve the ability general capabilities of autoencoders. In addition, our proposed method also takes advantage of both labeled and unlabeled samples to improve the retrieval precision. The experimental results on three databases demonstrate that the proposed method obtains competitive precision compared with other state-of-the-art image retrieval methods.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

Reference58 articles.

1. What regularized auto-encoders learn from the data-generating distribution;Guillaume;Journal of Machine Learning Research,2014

2. Distributed optimization and statistical learning via the alternating direction method of multipliers;Boyd;Foundations and Trends in Machine Learning,2011

3. M. Chen, K.Q. Weinberger, F. Sha and Y. Bengio, Marginalized denoising auto-encoders for nonlinear representations, in: Proceedings of International Conference on Machine Learning, 2014, pp. 1476–1484.

4. Sparse discriminant analysis;Clemmensen;Technometrics,2011

5. Image retrieval: Ideas, influences, and trends of the new age;Datta;ACM Computing Surveys,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3