Space-Like Irradiation Exacerbated Cognitive Deficits and Amyloid Pathology in CRND8 Mouse Model of Alzheimer’s Disease

Author:

Wang Wenzhang1,Zhao Fanpeng1,Torres Sandy1,Harris Peggy L.R.2,Wang Xinglong3,Peng Lihua1,Siedlak Sandra L.1,Zhu Xiongwei1

Affiliation:

1. Department of Pathology, Case Western Reserve University, Cleveland, OH, USA

2. Department of Genetics, Case Western Reserve University, Cleveland, OH, USA

3. Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ, USA

Abstract

Background: Space radiation was linked to neurological damage and behavioral deficits which raised concerns of increased degenerative risk on the brain and development of Alzheimer’s disease following space travel. Objective: In this study, we investigated the effects of irradiation by 56Fe and 28Si in CRND8 mice, an Alzheimer’s disease mouse model. Methods: Six-month-old CRND8 mice were exposed to whole body irradiation by 56Fe and 28Si at 0.5 Gy and 2 Gy doses. Behavior tests were administered 1-month to 3-months post-irradiation. Amyloid deposition and other pathological changes were analyzed 3-months and/or 6-months post-irradiation. Results: The Novel Object Recognition test showed some decline in 8-month-old mice compared to non-irradiated CRND8 mice. Male mice also showed a loss of freezing behavior in the fear conditioning contextual test following irradiation. Golgi staining revealed a loss of spines in hippocampal neurons after irradiation. Total amyloid immunohistochemistry showed a robust increase in 3-months post-irradiation 56Fe groups which became normalized to non-irradiated group by 6-months post-irradiation. However, 2 Gy 28Si caused a trend towards increased plaque load at 3-months post-irradiation which became significant at 6-months post irradiation only in male CRND8 mice. While 0.5 Gy Fe did not induce obvious changes in the total number of iba-1 positive microglia, more hippocampal microglia were found to express PCNA after 0.5 Gy Fe treatment, suggesting potential involvement of microglial dysfunction. Conclusions: Overall, our study provides new evidence of gender-specific and ion-dependent effects of space radiation on cognition and amyloid pathology in AD models.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3