A Single-Chain Variable Fragment Antibody Inhibits Aggregation of Phosphorylated Tau and Ameliorates Tau Toxicity in vitro and in vivo

Author:

Li Sen1,Yi Yushan2,Cui Ke1,Zhang Yanqiu1,Chen Yange1,Han Dou1,Sun Ling2,Zhang Xiaohui2,Chen Fei2,Zhang Yixin3,Yang Yufeng2

Affiliation:

1. Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Gene engineering and Biotechnology Beijing Key Laboratory, National Demonstration Center for Experimental Life Sciences & Biotechnology Education, Beijing, P. R. China

2. Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, P. R.China

3. B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany

Abstract

Background: Alzheimer’s disease (AD) is a common cause of dementia among elderly people. Hyperphosphorylation and aggregation of tau correlates with the clinical progression of AD; therefore, therapies targeting the aggregation of tau may have potential applications for anti-AD drug development. Several inhibitors of tau aggregation, including small molecules and antibodies, have been found to decrease the aggregation of tau and the corresponding pathology. Objective: To screen one kind of single-chain variable fragment (scFv) antibody which could inhibit the aggregation of tau and ameliorate its cytotoxicity. Methods/Results: Using phosphorylated tau (pTau) as an antigen, we obtained a scFv antibody via the screening of a high-capacity phage antibody library. Biochemical analysis revealed that this scFv antibody (scFv T1) had a strong ability to inhibit pTau aggregation both in dilute solutions and under conditions of macromolecular crowding. ScFv T1 could also depolymerize preformed pTau aggregates in vitro. Furthermore, scFv T1 was found to be able to inhibit the cytotoxicity of extracellular pTau aggregates and ameliorate tau-mediated toxicity when coexpressed with a hTauR406W mutant in the eye of transgenic Drosophila flies. Conclusion: This scFv T1 antibody may be a potential new therapeutic agent against AD. Our methods can be used to develop novel strategies against protein aggregation for the treatment of neurodegenerative diseases.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3