The balance control of bilateral peripheral vestibular loss subjects and its improvement with auditory prosthetic feedback

Author:

Hegeman J.1,Honegger F.1,Kupper M.1,Allum J.H.J.1

Affiliation:

1. Department of ORL, University Hospital, Basel, Switzerland

Abstract

Objective: We investigated whether long-term bilateral vestibular loss subjects could combine auditory biofeedback of trunk sway with their remaining natural sensory inputs on balance to provide an improved control of trunk sway. A successful integration of natural and artificial signals would provide a basis for a balance prosthesis. Methods: Trunk sway of 6 bilateral peripheral vestibular loss subjects (BVL) was recorded using either angular position- or velocity-based auditory feedback or no feedback during stance and gait tasks. Roll and pitch trunk movements were recorded with angular velocity transducers mounted just above the waist and feedback without a delay to 4 loudspeakers placed at the left, right, front and rear borders of the 5 m long by 4 m wide test environment. The two types of auditory feedback or no feedback were provided to the subjects in random order. In the feedback modes, sway greater than a preset angle (ca. 0.5 deg) or velocity (ca. 3 deg/s) thresholds caused a tone to be emitted from the speaker towards which the subject moved. The tone volume increased with increasing angle or angular velocity amplitude. Results: For all stance tasks BVL subjects without auditory feedback had a significantly different balance control with respect to that of normal controls. BVL sway values eyes open on a normal surface were reduced with auditory feedback with the greatest reductions in the roll plane. Specifically for the task of standing on 1 leg eyes open with position-auditory- feedback, amplitudes of pitch and roll angles and angular velocities were indistinguishable from those of normal controls. Sway during stance tasks on foam with eyes closed showed no improvement with feedback, remaining greater than normal. For some gait tasks there was a decrease in trunk sway with velocity feedback. Conclusions: These initial results indicate that subjects with vestibular loss could incorporate the auditory prosthetic sensory information into their balance commands, particularly in the roll plane if the balance task is performed with eyes open. Position information appears more useful than velocity information in reducing trunk sway during stance tasks. Future work will need to determine the effect of a training time on the improvement in balance control using such a prosthetic device and the ideal position and velocity auditory feedback combination.

Publisher

IOS Press

Subject

Neurology (clinical),Sensory Systems,Otorhinolaryngology,General Neuroscience

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3