Affiliation:
1. School of Computer Science and Engineering, North Minzu University, Yinchuan
Abstract
Constraint satisfaction problems have a wide range of applications in areas such as basic computer theory research and artificial intelligence, and many major studies in industry are not solved directly, but converted into instances of satisfiability problems for solution. Therefore, the solution of the satisfiability problem is a central problem in many important areas in the future. A large number of solution algorithms for this problem are mainly based on completeness algorithms and heuristic algorithms. Intelligent optimization algorithms with heuristic policies run significantly more efficiently on large-scale instances compared to completeness algorithms. This paper compares the principles, implementation steps, and applications of several major intelligent optimization algorithms in satisfiability problems, analyzes the characteristics of these algorithms, and focuses on the performance in solving satisfiability problems under different constraints. In terms of algorithms, evolutionary algorithms and swarm intelligence algorithms are introduced; in terms of applications, the solution to the satisfiability problem is studied. At the same time, the performance of the listed intelligent optimization algorithms in applications is analyzed in detail in terms of the direction of improvement of the algorithms, advantages and disadvantages and comparison algorithms, respectively, and the future application of intelligent optimization algorithms in satisfiability problems is prospected.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献