Modeling of intelligent hyperparameter tuned deep learning based copy move image forgery detection technique

Author:

Vaishnavi D.1,Balaji G.N.2

Affiliation:

1. Department of CSE, SRC, SASTRA Deemed to be University, Tamilnadu, India

2. School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India

Abstract

Due to the drastic increase in the generation of high-quality fake images in social networking, it is essential to design effective recognition approaches. Image/video manipulation defines any set of actions which can be carried out on digital content by the use of software editing approaches or artificial intelligence. A major kind of image and video editing comprises replicating the regions of the image, named as copy-move technique. Conventional image processing methods physically search for the pattern relevant to the replicated contents, restricting the utilization in massive classification of data. Contrastingly, the recently developed deep learning (DL) models have exhibited promising performance over the traditional models. In this aspect, this paper presents a novel intelligent deep learning based copy move image forgery detection (IDL-CMIFD) technique. The proposed IDL-CMIFD technique intends to design a DL model to classify the candidate images into two classes: original and forged/tampered and then localized the copy moved regions. In addition, the proposed IDL-CMIFD technique involves the Adam optimizer with Efficient Net based feature extractor to derive a useful set of feature vectors. Moreover, chaotic monarch butterfly optimization (CMBO) with deep wavelet neural network (DWNN) model is applied for classification purposes. The CMBO algorithm is utilized to optimally tune the parameters involved in the DWNN model in such a way that the classification performance gets improved. The performance validation of the proposed model takes place on benchmark MICC-F220, MICC-F2000, MICC-F600 datasets. A wide range of comparative analyses is performed and the results ensured the better performance of the IDL-CMIFD technique in terms of different evaluation parameters.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3