An optimal deep learning-based framework for the detection and classification of android malware

Author:

Jebin Bose S.1,Kalaiselvi R.1

Affiliation:

1. Department of Computer Science and Engineering, Noorul Islam Centre for Higher Education, Kumaracoil, Tamil Nadu, India

Abstract

 The use of smartphones is increasing rapidly and the malicious intrusions associated with it have become a challenging task that needs to be resolved. A secure and effective technique is needed to prevent breaches and detect malicious applications. Through deep learning methods and neural networks, the earliest detection and classification of malware can be performed. Detection of Android malware is the process to identify malicious attackers and through the classification method of malware, the type is categorized as adware, ransomware, SMS malware, and scareware. Since there were several techniques employed so far for malware detection and classification, there were some limitations like a reduced rate of accuracy and so on. To overcome these limitations, a deep learning-based automated process is employed to identify the malware. In this paper, initially, the datasets are collected, and through the preprocessing method, the duplicate and noisy data are removed to improve accuracy. Then the separated malware and benign dataset from the preprocessing phase is dealt with in feature selection. The reliable features are extracted in this process by Meta-Heuristic Artificial Jellyfish Search Optimizer (MH-AJSO). Further by the process of classification, the type of malware is categorized. The classification method is performed by the proposed Dense Dilated ResNet101 (DDResNet101) classifier. According to the type of malware the breach is prevented and secured on the android device. Although several methods of malware detection are found in the android platform the accuracy is effectively derived in our proposed system. Various performance analysis is performed to compare the robustness of detection. The results show that better accuracy of 98% is achieved in the proposed model with effectiveness for identifying the malware and thereby breaches and intrusion can be prevented.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SmRM: Ensemble Learning Devised Solution for Smart Riskware Management in Android Machines;2023 Annual International Conference on Emerging Research Areas: International Conference on Intelligent Systems (AICERA/ICIS);2023-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3