The use of thematic context-based deep learning in discourse expression of sports news

Author:

Liu Yefei1

Affiliation:

1. School of Physical Education, Yulin University, Yulin, Shaanxi, China

Abstract

Sports news is a type of discourse that is characterized by a specific vocabulary, style, and tone, and it is typically focused on conveying information about sporting events, athletes, and teams. Thematic context-based deep learning is a powerful approach that can be used to analyze and interpret various forms of natural language, including the discourse expression of sports news. An application model of sign language and lip language recognition based on deep learning is proposed to facilitate people with hearing impairment to easily obtain sports news content. First, the lip language recognition system is constructed; next, MobileNet lightweight network combined with Long-Short Term Memory (LSTM) is used to extract lip reading features. ResNet-50 residual network structure isadopted to extract the features of sign language; finally, the convergence, accuracy, precision and recall of the model are verified respectively. The results show that the loss of training set and test set converges gradually with the increase of iteration times; the lip language recognition model and the sign language recognition model basically tend to be stable after 14 iterations and 12 iterations, respectively, suggesting a better convergence effect of sign language recognition. The accuracy of sign language recognition and lip language recognition is 98.9% and 87.7%, respectively. In sign language recognition, the recognition accuracy of numbers 1, 2, 4, 6 and 8 can reach 100%. In lip language recognition, the recognition accuracy of numbers 2, 3 and 9 is relatively higher. This exploration can facilitate hearing-impaired people to quickly obtain the relevant content in sports news videos, and also provide help for their communication.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3