Deep learning based two-fold segmentation model for liver tumor detection

Author:

Anandan D.1,Hariharan S.2,Sasikumar R.3

Affiliation:

1. Computer Science and Engineering, VSB Engineering College, Karudayampalayam PO, Karur, TN, India

2. Computer Science and Engineering, Vardhaman College of Engineering, Kacharam, Samshabad, Hyderabad, Telangana, India

3. Computer Science and Engineering, R.M.D. Engineering College, R.S.M. Nagar, Kavaraipettai, Tiruvallur Dt., TN, India

Abstract

Liver Tumour (LT) develops when healthy cells undergo abnormal DNA changes that cause them to grow and divide uncontrollably. In manual examination, evaluation might be changed by the unique perception of the observers, which depends on their expertise and subjectivity. Therefore, computer-aided intelligent tools are established to eliminate subjectivity and increase the performance. To overcome these challenges, a novel Two-fold Segmentation of Liver Tumour (TFSLT) model for accurately detecting the liver tumour using computed tomography (CT) images. Initially, the CT images are pre-processed using Normalized-Modified Anisotropic Diffusion Filtering (NMADF) Algorithm to reduce the noise artifacts. These pre-processed CT images are taken as input to the Canny Edge Detector (CED) for detecting the edges of the liver. Based on these edges, the first-fold segmentation process is performed using the Jaccard metric-based Watershed (JMWS) algorithm to accurately segment the liver region. Improved Deep Neural Network (IDNN) is utilized to classify the LT into normal, Hepatocellular carcinoma (HCC), Cholangio carcinoma (CC) and Metastatic tumour (MT). Modified Elephant Herd Optimization (MEHO) algorithm for the MEHO algorithm for selecting the features of the images. Finally, the Improved Expectation-Maximization (IEM) Algorithm as second-fold segmentation process to segment the different abnormal classes. The performance of the proposed TFSLT approach is assessed using the specific metrics like recall, precision, specificity, accuracy and F1 score. The experimental findings reveal that the proposed TFSLT approach achieves a better accuracy range of 99.57% for detecting LT in its early stages.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3