Speaker diarization with variants of self-attention and joint speaker embedding extractor

Author:

Fu Pengbin1,Ma Yuchen1,Yang Huirong1

Affiliation:

1. Faculty of Information Technology, Beijing university of technology, Xidawang Road, Beijing, China

Abstract

The speaker diarization task pertains to the automated differentiation of speakers within an audio recording, while lacking any prior information regarding the speakers. The introduction of the self-attention mechanism in End-to-End Neural Speaker Diarization (EEND) has elegantly resolved the issue of overlapping speakers. The Transformer model equipped with self-attention mechanism has shown great potential in collecting global information, yielding remarkable outcomes in various tasks. However, the individual speaker characteristics are predominantly reflected in the contextual information, which conventional self-attention would not adequately address. In this study, we propose a hierarchical encoders model to augment the encoders’ acquisition of speaker information in two distinct ways: (1) Constraining the perceptual field of the self-attentive mechanism with left-right windows or Gaussian weights to highlight contextual information; (2) Utilizing a pre-trained time-delay neural network based speaker embedding extractor to alleviate the shortcomings of speaker feature extraction ability. We evaluate the proposed methods on a simulated dataset of two speakers and a real conversation dataset. The model with the most favorable outcomes among the proposed enhancements achieves a diarization error rate of 7.74% on the simulated dataset and 21.92% on MagicData-RAMC after adaptation. These results compellingly demonstrate the efficacy of the proposed methods.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3