Design of knowledge incorporated VQA based on spatial GCNN with structured sentence embedding and linking algorithm

Author:

Koshti Dipali1,Gupta Ashutosh1,Kalla Mukesh1

Affiliation:

1. Sir Padampat Singhania University, Udaipur, Rajasthan, India

Abstract

Visual question Answering (VQA) is a computer vision task that requires a system to infer an answer to a text-based question about an image. Prior approaches did not take into account an image’s positional information or the questions’ grammatical and semantic relationships during image and question processing. Featurization, which leads to the false answering of the question. Hence to overcome this issue CNN –Graph based LSTM with optimized BP Featurization technique is introduced for feature extraction of image as well as question. The position of the subjects in the image has been determined using CNN with a dropout layer and the optimized momentum backpropagation during the extraction of image features without losing any image data. Then, using a graph-based LSTM with loopy backpropagation, the questions’ syntactic and semantic dependencies are retrieved. However, due to their lack of external knowledge about the input image, the existing approaches are unable to respond to common sense knowledge-based questions (open domain). As a result, the proposed Spatial GCNN knowledge retrieval with PDB Model and Spatial Graph Convolutional Neural Network, which recovers external data from Wikidata, have been used to address the open domain problems. Then the Probabilistic Discriminative Bayesian model, based Attention mechanism predicts the answer by referring to all concepts in question. Thus, the proposed method answers the open domain question with high accuracy of 88.30%.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3