GPX4 inhibits apoptosis of thyroid cancer cells through regulating the FKBP8/Bcl-2 axis

Author:

Dang Tianfeng121,Yu Jieqing11,Yu Yanqing3,Jiang Junjie1,Shi Yang1,Yu Simin1,Peng Congli1,Min Xiang1,Xiong Yuanping1,Long Ping1,Zhou Wensheng1,Dai Daofeng1

Affiliation:

1. Jiangxi Otorhinolaryngology-Head and Neck Surgery Institute, Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China

2. Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China

3. Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China

Abstract

GPX4 has attracted much attention as a key molecule of cell ferroptosis, but its role in cell apoptosis is rarely reported, and its role in apoptosis of thyroid cancer (TC) cell has not been reported. The analysis of TCGA database showed that both GPX4 and FKBP8 were highly expressed in TC tumor tissues; The expression of GPX4 and FKBP8 were positively correlated. The immunohistochemical analysis further confirmed that GPX4 and FKBP8 were highly expressed in TC tumor tissues. In addition, the high expression of GPX4 and FKBP8 were both significantly correlated with the poor prognosis of TC. Silencing GPX4 significantly inhibited the proliferation, induced apoptosis of TC cells, and reduced tumor growth in mice. The co-immunoprecipitation assay revealed a physical interaction between GPX4 and FKBP8 observed in the TC cells. Knockdown of FKBP8 significantly inhibited the proliferation and induced apoptosis of TC cells. Rescue experiments suggested that knockdown of FKBP8 could reverse the strengthens of cell proliferation and apoptosis and the higher expression of FKBP8 and Bcl-2 caused by overexpression of GPX4. Our results suggest that the GPX4/FKBP8/Bcl-2 axis promotes TC development by inhibiting TC cell apoptosis, which provides potential molecular targets for TC therapeutic strategies.

Publisher

IOS Press

Subject

Cancer Research,Genetics,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3