Biocompatibility of polyurethane-coated breast implants: A histological comparison of implant capsules

Author:

Vanessa Hoesl1,Johanna Klepetko2,Brochhausen C.3,Gleißner S.4,Prantl L.1,Kempa S.1

Affiliation:

1. Center of Plastic, Aesthetic Hand and Reconstructive Surgery, University Hospital Regensburg, Germany

2. Faculty of Medicine, Medical University of Vienna, Austria

3. Institute for Pathology, University Hospital Regensburg, Germany

4. Faculty of Medicine, University of Regensburg, Germany

Abstract

BACKGROUND: Biocompatibility describes the influence of materials on their biological environment. Implant material in the human body can cause a foreign body reaction and the formation of a capsule around the foreign material. Since capsular formation is the most frequent issue after breast-implant insertion, knowledge and awareness of biocompatibility is crucial, especially since worldwide, breast augmentation continues to be the most popular plastic surgery, with over 1.6 million procedures performed in 2020, according to surveys by the International Society of Aesthetic Plastic Surgery (ISAPS). MATERIAL AND METHODS: This study includes 80 capsular samples of female patients who underwent revision surgery after breast-implant insertion at the University Hospital Regensburg. Capsules of breast implants with different surface structures (smooth, textured and polyurethane-coated) and shapes (round-shaped, anatomically-shaped) were analyzed histologically after hematoxylin-eosin-staining in respect to capsular thickness and layer formation. RESULTS: Capsular thickness and layering showed a statistically significant difference between polyurethane-coated and smooth as well as polyurethane-coated and textured implants. Capsules around polyurethane-coated implants presented greater thickness. However, the difference between smooth and textured implants was not statistically significant. Furthermore, the shape of the implants also indicated a statistically significant difference in capsular thickness. Implants of anatomical shape resulted in a thinner capsule than round-shaped breast-implants. CONCLUSION: In conclusion, this study demonstrated a thicker capsule around polyurethane-coated breast implants and no difference in capsular thickness between smooth and textured breast implants. Anatomically shaped breast-implants presented a thinner capsule than round shaped breast-implants.

Publisher

IOS Press

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Hematology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3