High-Performance Concrete compressive property prediction via deep hybrid learning

Author:

Chen Jilan1

Affiliation:

1. School of Civil Engineering, South West Jiaotong University, ChengDu, China

Abstract

The vast usage of concrete made it the second most used material after water. This volume of concrete consumes an enormous number of natural sources and chronically enhances environmental pollution by CO2 emission. Cementitious supplementary materials such as fly ash and micro silica help decrease the usage of cohesive materials in the concrete and improve concrete’s properties, specifically compressive strength. In addition, due to being the by-product materials of other industries, applying these materials contribute to the decline of environmental pollution. On the other hand, fly ash and micro silica decrease the ratio of water to cement and increase the compressive strength (CS) of concrete. High-Performance Concrete (HPC) is one of the types of concrete used in dams, bridges, etc. In order to achieve the compressive strength of HPC, it is necessary to conduct laboratory tests, which are not economical in terms of time and cost. For this reason, in the present study, the prediction of the CS of the mentioned concrete can be done based on soft-based and artificial intelligence. Furthermore, various mixed designs of HPC, such as fly ash and silica fume coupled with different percentages of plasticizers, are considered the base dataset for developing the prediction models. Neural network-based model hybridized with antlion optimization algorithm and biography-based optimization algorithm developed for compressive strength estimation. The result showed that the AMLP-I model with R2 and RMSE values of 0.9879 and 1.9003 accurately predicted compressive strength and can be referred to as the most qualitative prediction model compared to the BMLP model.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3