Prediction of high-performance concrete compressive strength through novel structured neural network

Author:

Li Huan1

Affiliation:

1. Department of Civil and Architectural Engineering, Nanchong Vocational and Technical College, Nanchong, Sichuan, China

Abstract

The difficulties in determining the compressive strength of concrete are inherited due to the various nonlinearities rooted in the mix designs. These difficulties raise dramatically considering the modern mix designs of high-performance concrete. Presents study tries to define a simple approach to link the input ingredients of concrete with the resulted compressive with a high accuracy rate and overcome the existing nonlinearity. For this purpose, the radial base function is defined to carry out the modeling process. The optimal results were obtained by determining the optimal structure of radial base function neural networks. This task was handled well with two precise optimization algorithms, namely Henry’s gas solubility algorithm and particle swarm optimization algorithm. The results defined both models’ best performance earned in the training section. Considering the root mean square error values, the best value stood at 2.5629 for the radial base neural network optimized by Henry’s gas solubility algorithm, whereas the same value for the the radial base neural network optimized by particle swarm optimization was 2.6583 although both hybrid models provided acceptable output results, the radial base neural network optimized by Henry’s gas solubility algorithm showed higher accuracy in predicting high performance concrete compressive strength.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3