Affiliation:
1. GGSIPU, Delhi, India
2. NSUT (East Campus), Delhi, India
Abstract
Anomalous event recognition has a complicated definition in the complex background due to the sparse occurrence of anomalies. In this paper, we form a framework for classifying multiple anomalies present in video frames that happen in a context such as the sudden moment of people in various directions and anomalous vehicles in the pedestrian park. An attention U-net model on video frames is utilized to create a binary segmented anomalous image that classifies each anomalous object in the video. White pixels indicate the anomaly, and black pixels serve as the background image. For better segmentation, we have assigned a border to every anomalous object in a binary image. Further to distinguish each anomaly a watershed algorithm is utilized that develops multi-level gray image masks for every anomalous class. This forms a multi-class problem, where each anomalous instance is represented by a different gray color level. We use pixel values, Optical Intensity, entropy values, and Gaussian filter with sigma 5, and 7 to form a feature extraction module for training video images along with their multi-instance gray-level masks. Pixel-level localization and identification of unusual items are done using the feature vectors acquired from the feature extraction module and multi-class stack classifier model. The proposed methodology is evaluated on UCSD Ped1, Ped2 and UMN datasets that obtain pixel-level average accuracy results of 81.15%,87.26% and 82.67% respectively.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Detection of Abnormal Behavioral States in Student Learning Based on Video Surveillance;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28