Multi-attention guided and feature enhancement network for vehicle re-identification

Author:

Yu Yang1,He Kun1,Yan Gang1,Cen Shixin2,Li Yang3,Yu Ming12

Affiliation:

1. School of Artificial Intelligence, Hebei University of Technology, Tianjin, PR China

2. School of Electronic and Information Engineering, Hebei University of Technology, Tianjin, PR China

3. Institute of Information, Tianjin Academy of Agricultural Sciences, Tianjin, PR China

Abstract

Vehicle Re-Identification (Re-ID) aims to discover and match target vehicles in different cameras of road surveillance. The high similarity between vehicle appearances and the dramatic variations in viewpoints and illumination cause great challenges for vehicle Re-ID. Meanwhile, in safety supervision and intelligent traffic systems, one needs a quick efficient method of identifying target vehicles. In this paper, we propose a Multi-Attention Guided Feature Enhancement Network (MAFEN) to extract robust vehicle appearance features. Specifically, the Fusing Spatial-Channel information multi-receptive fields Feature Enhancement module (FSCFE) is first proposed to aggregate richer and more representative multi-receptive fields features at different receptive fields sizes. It also learned the spatial structure information and channel dependencies of the multi-receptive fields features and embedded them to enhance the feature. Then, we construct the Spatial Attention-Guided Adaptive Feature Erasure (SAAFE) module, which uses spatial attention to erase the most distinguishing features. The network’s attention is shifted to potentially salient features to strengthen the ability of the network to extract salient features. In addition, a multi-loss knowledge distillation (MLKD) method using MAFEN as a teacher network is designed to improve computational efficiency. It uses multiple loss functions to jointly supervise the student network. Experimental results on three public datasets demonstrate the merits of the proposed method over the state-of-the-art methods.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3