Affiliation:
1. School of Architecture and Design, Nanchang University, Nanchang, China
2. Graduate School of Commerce, Waseda University, Tokyo, Japan
3. Yiwu Industrial and Commercial College, Yiwu, China
Abstract
Bamboo furniture is made of green and environmentally friendly bamboo, there is a unique hand temperature and weaving beauty in addition to bamboo texture and characteristics. In the past, making bamboo furniture relied on the traditional experience of craftsmen, which had less change in appearance and lack of communication with customers, and could not meet the fashion and aesthetic needs of modern people. Therefore, this paper connects deep convolution neural network (DCNN) and deep convolution generative adversarial network (DCGAN) to generate bamboo furniture design that meets customers’ emotional needs. First, based on collecting 17856 bamboo furniture in the market, DCNN builds product image recognition models and enhances image recognition performance, thereby optimizing computational efficiency and obtaining high-quality output. The optimal recognition rate of emotional data set throughout the chair product is 98.7%, of which the modern chair has a recognition rate of 99.2%, and the recognition rate of fashion bamboo chairs is 98.2%. Second, DCGAN learns a good intermediate feature from a large quantity of non-marked images and automatically generates product styling that arouses the emotional resonance of customers. Finally, the fashion designers use this creative picture as the source of inspiration, cooperate with individual characteristics and trends of the times, then design green sustainable bamboo chairs. These design plans have increased the variety of product modalities, which greatly enhances customers’ emotional satisfaction and increases product sales. The collaborative design method proposed in this paper provides new ideas for generating the emotional design of bamboo furniture, which can also expand to other industrial product designs.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献