Developing of neuro-swarm system to estimate the undrained shear strength of soil by CPT data

Author:

Gang Wang1,Ling Song Jin1,Yin Feng Jia1,Yan Jia Dong1,Yan Zhao1

Affiliation:

1. Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, China

Abstract

In this study, a novel hybrid metaheuristic model was developed to forecast the undrained soil shear (USS) property from cone penetration test (CPT) data (data from bore log sample from 70 different sites in Louisiana). This algorithm produced with the integration of grey wolf optimization (GWO) and multilayer perceptron neural network (MLP), named GWO - MLP, where different numbers of hidden layers were tested (1 to 4). The duty of optimization algorithm was to determine the optimal number of neurons in each hidden layer. To this objective, the system comprised five inputs entitled sleeve friction, cone tip persistence, liquid limit, plastic limitation, too much weight, and USS as outcome. The developed models for forecasting the USS of soil show the proposed best models have R2 at 0.9134 and 0.9236 in the training and predicting stage. Although the total ranking score of GWO-MLP2 and GWO-MLP4 is equal, the OBJ value shows that GWO-MLP4 has better performance than GWO-MLP2. In this case, considering the time of model running and a greater number of hidden layers suggests that GWO-MLP2 could be most appropriate. Therefore, the GWO-MLP3 model outperforms other GWO-MLP networks in the training and testing phase.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3