Compressive strength prediction of admixed HPC concrete by hybrid deep learning approaches

Author:

Weng Peng1,Xie JingJing1,Zou Yang2

Affiliation:

1. Changzhou University Huaide College, JingJiang, China

2. Shanghai Construction NO.2(Group) Co., Ltd, ShangHai, China

Abstract

The estimation of compressive strength includes time-consuming, finance-wasting, and laboring approaches to undertaking High-performance concrete (HPC) production. On the other side, a vast volume of concrete consumption in industrial construction requires an optimal mix design with different percentages to reach the highest compressive strength. The present study considered two deep learning approaches to handle compressive strength prediction. The robustness of the deep model was put high through two novel optimization algorithms as a novelty in the research world that played their precise roles in charge of model structure optimization. Also, a dataset containing cement, silica fume, fly ash, the total aggregate amount, the coarse aggregate amount, superplasticizer, water, curing time, and high-performance concrete compressive strength was used to develop models. The results indicate that the AMLP-I and GMLP-I models served the highest prediction accuracy. R2 and RMSE of AMLP-I stood at 0.9895 and 1.7341, respectively, which declared that the AMLP-I model could be presented as the robust model for estimating compressive strength. Generally, using optimization algorithms to boost the capabilities of prediction models by tuning the internal characteristics has increased the reliability of artificial intelligent approaches to substitute the more experimental practices.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3