An efficient image defogging algorithm based on dragonfly optimized gamma correction and stationary wavelet decomposition

Author:

Ramsanjay S. A.1,Sumathi S.1

Affiliation:

1. Department of Electrical and Electronics Engineering, Mahendra Engineering College, Namakkal, India

Abstract

Image dehazing is a revolutionary technique for restoring images with hazy or foggy landscapes, that has gotten a lot of focus in recent years since it gained importance in a surveillance system. However, the image processing by the traditional defogging algorithm has difficulties in integrating the depth of image detail and the color of the image. Therefore, in this paper, a novel framework based on wavelet decomposition and optimized gamma correction is proposed for efficaciously retrieving the fog-free image. The foggy image is first divided into low and high frequency sub-images using SWT (Stationary Wavelet Transform), which has the advantages of preserving temporal features so that information loss can be stopped. Then the low frequency and high frequency images are processed with defogging and denoising modules to remove fog and noise respectively. The DOGC (Dragonfly optimal Gamma Correction) algorithm in dehazing module dynamically enhanced the color detail information without human intervention so that observed scene contrast and visibility are well preserved. Lastly, fog-free image is reconstructed from sub-enhanced images. The experimental findings show that the proposed framework outperforms state-of-the-art methods in terms of both quantitative and qualitative assessment criteria using the established dataset. Furthermore, the proposed method efficiently removes fog while preserving the naturalness of fog images.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference32 articles.

1. Underwater image restoration and enhancement based on a fusion algorithm with color balance, contrast optimization, and histogram stretching;Luo;IEEE Access,2021

2. Visibility enhancement of scene images degraded by foggy weather conditions with deep neural networks;Hussain;Journal of Sensors,2016

3. Optimal transmission estimation via fog density perception for efficient single image defogging;Ling;IEEE Transactions on Multimedia,2017

4. VRHI: visibility restoration for hazy images using a haze density model;Ju;Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021

5. Single maritime image defogging based on illumination decomposition using texture and structure priors;Van Nguyen;IEEE Access,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3